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Numerous techniques exist to optimize aircraft and spacecraft trajectories over cost 
functions that include terms such as fuel, time, and separation from obstacles. Relative 
weighting factors can dramatically alter solution characteristics, and engineers often must 
manually adjust either cost weights or the trajectory itself to obtain feasible solutions. This 
work integrates a rule-based planner inspired by human cognition with an optimal controls 
trajectory planner to automatically construct trajectories that do not require manual 
inspection or adjustment. The cognitive agent translates mission goals into cost function 
weights expected to produce motions that appropriately trade fuel and time efficiency as well 
as proximity to obstacles.  The quality of the resulting full-state trajectory is then evaluated 
based on a set of computed trajectory features and specified constraints. Although each 
trajectory is mathematically optimal with respect to its dynamics and the weighted cost 
function, the agent may find it unacceptable locally (e.g., passes through an obstacle) or 
globally (e.g., requires too much fuel). The violating condition(s) are either translated to a 
new weight set or the trajectory is locally repaired, iterating until an acceptable trajectory is 
generated or the domain is deemed unsolvable. An ideal planar robot implementation 
introduces the models and provides intuitive baseline results. A three-dimensional spacecraft 
implementation is presented, a domain in which fuel savings and safety are critical for 
success. 

Nomenclature 
{A} = action set for planning problem p0 

a = generic dynamical equation 

bc = boundary conditions for X <t0, x0, xf> 

c = cubic spline coefficients in oi(ri) 

cs = coefficient of sliding friction 

Fi  = trajectory feature vector for planning state si  

fi = fuel component of ui over ti for planning state si 

G =  feature-based goal state required by the high-level strategic planner 

Gσ(σ) = dynamic equation for the modified Rodrigues vector R(σ) 

g = generic cost function 
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H = rotational inertial matrix of a robotic spacecraft 

{HIST} =  history of the optimal trajectory search for planning state si 

I = full feature-based [symbolic] initial state provided by the high-level strategic planner 

i, j = generic indices 

Ji  = integrated cost over trajectory (ti, xi, ui) 

J(x,u,t{O})  = domain-dependent multi-objective cost function with weights Wi 

k = number of obstacles in {O} 

Li  = feature vector limits (constraints) for planning state si (L0 = initial/default limit set) 

m = mass of a robotic vehicle 

n =  number of planning states si expanded to solve planning problem p0 

{O}  = set of k obstacles {O1,O2,…,Ok}  

oi(ri) = penalty function for robotic vehicle nearness to obstacle i in {O} 

PS = ACT-R production set for strategic planning operations 

PT = ACT-R production set specifically related to trajectory planning decisions 

p0  = trajectory planning problem <bc, W0, L0>  

Ri = radius of circular obstacle i in {O} 

ri = distance from robotic vehicle to center of obstacle i in {O} 

S = matrix representation of the cross product 

si = current state of the plan proposed to solve p0 

ti  = vector of trajectory time points {t1, …, tm} for planning state si  

ui  = control actuation vector over ti for planning state si 

vi(r′i) = penalty function for robotic vehicle speed near obstacle i in {O} 

Wi  = cost function weighting factor vector used in planning state si 

X  = solution <Jn, Ln, tn, xn, un> returned for planning problem p0 

xi  = position/velocity state vector over ti for planning state si 

δJ = variation of the cost functional J 

λi = time-varying vector of Lagrange multipliers for planning state si 

µ = approximation of the universal gravitational constant used when one body is much larger than the 

 other 

σi = angular position component to state vector xi for planning state si 

τi = electrical component of ui over ti for planning state si 

ωi = rotational velocity component to state vector xi for planning state si 

I. � Introduction 
ntelligent robotic systems will play an important role in future space and planetary surface operations. Whether 
exploring on their own or accompanying and supporting human pioneers, they will need the capability to reason, 

plan ahead, and make decisions based on goals, the environment, and the desires of human or robotic teammates. 
Embodied robots must also translate mission goals into appropriate physical responses. 

I 
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Balancing competing costs, while satisfying certain hard constraints, is an important component of 
“appropriateness.” In space exploration problems, fuel and power conservation are dominant issues, whether the 
robot under discussion has a limited tank of fuel for positioning or, despite recharging capability, has a limited 
power budget constrained by battery weight. Timeliness is also a concern, as many scientists may wish to use a 
vehicle’s capabilities for a variety of projects before its lifespan ends. Preserving vehicle health is another priority, 
and all of this must be done while respecting the dynamical constraints of the vehicle, and the dynamical properties 
of its environment. 

Optimal control theory is a well-developed tool that can assist in just such problems. Goals, priorities, and 
constraints can be encoded in a cost functional. The cost functional is then optimized via the calculus of variations 
and returns both an optimal full-state trajectory and the control inputs needed to follow it. The construction of cost 
functionals, however, is often a non-trivial task. Some constraints which can be imposed in theory make the problem 
computationally intractable. Further, the process of adjusting the relative weights of the cost functional components 
to reflect the user’s intentions is often an iterative process with no clear or principled guidelines. The iteration is 
typically carried out by a human expert who compares the trajectory that is optimal with respect to the cost 
functional to what he “really meant” to request. Such a process may work well for a spacecraft whose entire 
trajectory can be plotted out years in advance, but it does not work well for space, air, and surface vehicles that 
require some level of autonomy. 

We aim to replace the human expert with a synthetic one that can be deployed onboard the robot. We provide it 
with an understanding of potentially desirable trajectory qualities as well as knowledge about how changing the 
parameters of the cost functional is likely to affect the trajectory. It also has the ability to decide when a trajectory is 
close enough to acceptable, except for one small deviation – then correct that deviation itself and recheck the 
resulting trajectory. For example, if a trajectory satisfies all constraints except that it passes just a short distance into 
a known obstacle, the cognitive agent – the intelligent autonomous overseer onboard the robot – can reroute the path 
around the obstacle, interpolate the velocities needed, and then check to ensure that these changes did not create a 
new problem (e.g., violating a constraint on acceleration). To our knowledge, this is the first time artificial 
intelligence techniques have been applied to the trajectory optimization problem. Our method of combining a model 
of human decision-making with a computational technique for obtaining optimal or near-optimal trajectories is 
novel and of use to the autonomous vehicles community. 

Getting to a particular location is typically the province of path planning. Many robust techniques exist and have 
been implemented on mobile robots operating in complex environments. Voronoi diagrams, tangent graphs, cell 
decomposition and potential fields1 all are viable path planning methods.  However, they must all be augmented in 
some way to allow the use of a cost function that involves more than minimizing path length or distance from 
obstacles. Robots require fuel, power, and time resources to move about their environment. To fully define a 
“trajectory”, a “path” (i.e., sequence of positions) must be augmented with velocities and angular motion parameters 
(e.g., heading, angular velocity).  Resource costs in the form of forces/torques and traversal times can then be 
computed from the governing equations of motion.  To incorporate quantities such as fuel and time into a traditional 
path planner’s cost function, system “state” must be augmented with velocities, etc. An exhaustive search through a 
space of discretized dynamic parameter values (e.g., velocities) given constraints (e.g., limited accelerations) could 
theoretically be used to augment each path segment with a good or even optimal trajectory. However, computational 
efficiency is poor, and optimality is subject to the level of dynamic parameter discretization. 

Optimal control algorithms build full trajectories rather than paths. Calculus of variations2 is used to minimize a 
functional, which can include both a cost function and constraints on the state (imposed by system dynamics or 
otherwise). If the dynamics of a certain mobile robot are used as constraints, the procedure will only return a 
trajectory that the robot is capable of following. When a cost function is included, the trajectory will be otherwise 
minimized with respect to that. This method is not global and performs the minimization in the area around a given 
initial solution guess, but techniques have been developed to increase this area and the general robustness of the 
associated numeric solution.3 This is an offline planning technique that is both mathematically rigorous and 
provably optimal, at the expense of computational complexity. It is therefore quite different from the work done in 
machine learning4 which is for fast, reactive behaviors that do not have a global perspective. A global planner, in 
addition to avoiding the dead-ends that may break a reactive navigation system, can take advantage of maneuvers 
which, although immediately very costly, may result in a lower total cost. This comes, of course, at the price of 
requiring a model of the world.  

The offline nature of the optimal controls approach is of some concern. There are, however, some near-optimal5 
approaches that can operate in real-time. These can offer orders of magnitude more fuel efficiency than a reactive 
approach and the consideration of a multi-objective cost functional. We have adopted a standard and accepted 
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offline trajectory planner for this work, but since our synthetic agent reasons over trajectories and cost functionals, 
not trajectory generation methods, it will not be difficult to eventually integrate it with one such method. 

Our optimal control cost function contains three terms: fuel use, clearance from obstacles, and time. Prior to this 
work, cost function weights were set in an ad hoc fashion, often determined experimentally. While we will develop 
our basic behavior-eliciting weights experimentally, we have developed rules to dictate weight adjustment "within" 
as well as "between" behaviors. Perhaps the most analogous work is the hybrid dynamical systems approach.6 In this 
work on low-level navigation, a dynamic “comfort level” is used to adjust the weighting parameters of repulsor 
fields surrounding environmental obstacles. This is a purely reactive method, however, that does not attempt to 
calculate or minimize any costs over the entire trajectory. 

Weighting factors are needed for cost functions that have more than one term. “The shortest path that uses the 
least amount of fuel” is often neither the shortest possible path, nor the path that uses the least fuel, but one which 
strikes a balance between them. The relative weights of these terms determine what sort of balance results. 
Substantial oversight is often required to analyze the sensitivity of solution characteristics to cost function weights, 
and this sensitivity analysis may be specific to particular problems rather than fully generalizable. Typically, 
researchers test different weight combinations until one that produces the desired behavior is found or use a default 
weight set (e.g., all weights equal3). Since the quantities being weighted can be of different units and even different 
orders of magnitude, there is often no more principled technique available. 

Changing the weights changes the resulting behaviors. If saving fuel and avoiding obstacles are highly prized, 
the robot may travel slowly, avoiding rapid accelerations and looping far around obstacles. If a short completion 
time is heavily weighted, the robot will zoom forward, dodging obstacles at high speeds with low clearance. Human 
observers might give emotionally-inspired names to these behaviors: careful, reckless.  But this work is different 
from emotionally-based behaviors.7 In that work, different goals and environmental factors contribute to producing 
emotions, which then inhibit or excite certain behaviors. The value of a new behavior is computed from both a 
weighted sum of "releasers" or triggers for the behavior, and excitory or inhibitory impulses generated by other, 
active behaviors. The weights are static, so the system depends on sufficiently high levels of releasers to trigger a 
new behavior. This is entirely in keeping with the theory behind behavior-based robotics.8 However, it does not 
allow for computational optimization of any kind. Our research is aimed at eliciting behaviors that are optimal with 
respect to specific physical quantities (e.g., fuel, time, and distance from obstacles). Given the agent’s goals and 
environment, some of these quantities may be perceived as more important than others, and weighted more heavily, 
resulting in a behavior that is optimal for this agent, with these goals, in this particular environment. Emotional 
language may be used to characterize these behaviors-aggressive, fearful, or cautious, for example - but we do not 
seek to model emotions as a means of achieving these behaviors. 

We will instead use a computational cognitive modeling system to recognize what kind of behavior is mostly 
likely to be successful, given the goal and the environment at the moment. Then, we use the trajectory planner to 
make physical motions best representing that “stereotyped” behavior. Systems like ACT-R,9 Soar,10 and EPIC,11 all 
try to model not only the end result of human cognition, but also the process by which those results are reached. We 
chose to use ACT-R, although the other architectures could be adopted as well. In ACT-R, procedural rules fire in 
the presence of certain "chunks" of symbolic declarative memory. This is a serial system, using the bottleneck as a 
point of coordination among different cognitive modules. This makes it a very attractive option for implementing on 
a physical robotic system. Finally, ACT-R also has an extension, ACT-R/S, which supports spatial awareness. The 
Naval Research Laboratory has leveraged this into a model of perspective-taking12 which we plan to integrate as part 
of the cognitive model in our architecture. 

As a preliminary, we disambiguate terminology used throughout this paper. The word “robot” is used to denote 
an embodied autonomous or semi-autonomous vehicle operating in an environment. An “agent” is not necessarily 
embodied; however, it is an intelligent actor in the system. Our cognitive model is software, but it performs an 
intelligent function for the robot (or robot simulator) on which it is installed. We often refer to it as “the cognitive 
agent” or “the agent.” To emphasize that all members of an intelligent group work within the same environment as a 
team, we refer to them all as “agents” with specifications: “robotic agent,” “software agent,” and “human agent.” 

This paper is organized as follows: We present an overview of the system architecture and a review of optimal 
control theory. We discus in detail the ACT-R model we have developed. Our first set of results is for a 2-DOF point 
robot moving in the plane, a sort of simplified rover case. We discuss its assumed dynamics, the cost functional 
used, and the results of adjusting the parameters of the cost functional. We then repeat this treatment for a 6-DOF 
spacecraft flying in flat space with limited control authority. We conclude with a brief summary and discuss 
extensions to a multi-agent case, to provide flexible but optimized formation navigation. 
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II. � Architecture 
Figure 1 shows an outline of the agent’s processes. At the center sits the ACT-R model, overseeing all activities. 

The human user interacts with this module, monitoring events rather than directly participating in trajectory 
generation processes. The ACT-R trajectory planning agent accepts a planning problem, p0, which can be posed by 
the user or by any suitable high-level planner that builds task-level actions to achieve its goals, some of which may 
require vehicle motions. 

 

Fig. 1  Component architecture and dataflow. 

A trajectory planning problem p0 is defined as <bc, W0, L0> with boundary conditions bc=<t0, x0, xf>. The goal 
is to return feasible and optimal solution X=<Jn, Ln, tn, xn, un>, where Jn and Ln summarize solution cost and the 
feature limits/constraints, respectively, and the set <tn, xn, un> specifies the full-state trajectory to be executed.   
ACT-R incrementally builds a history of activities {HIST}={HIST1, HIST2, …} with each HISTi described by an 
action Ai and planning state si. It can then use {HIST} to identify which weight adjustment strategies it has already 
employed, to avoid infinite loops. For the trajectory planning problem, action set {A} is defined as {INIT, EVAL, 
RET, TPLAN, FEXT, WADJ, REPAIR}, with blue text denoting actions performed as ACT-R calls to external 
functions. Each of these modules will be explained in more detail below. Each planning state si=<Wi, Fi, Li, Ji, ti, xi, 
ui> includes all information pertaining to a single trajectory generation cycle, with blue text denoting the continuous 
trajectory ACT-R tracks and passes to external functions but does not process as part of its feature space. Cast in the 
context of a complete mission planning problem, {I,PS,G} is the ACT-R knowledge base for strategic decision-
making, where I is the full feature-based [symbolic] initial state, G is the feature-based goal state, and PS is the 
ACT-R production set for strategic planning operations. PT is the ACT-R production set specifically related to 
trajectory planning decisions; it includes all productions required to control the Fig. 1 processes as well as perform 
actions INIT, EVAL, and RET. 

Figure 2 shows the possible paths through the architecture. INIT initializes the problem state, p0. Next, TPLAN 
generates an initial optimal trajectory. FEXT extracts the relevant trajectory features, Fi, and sends them to EVAL. If 
all Fi are within the limits Li, the trajectory is good and the solution X is returned by RET to the user and the higher-
level strategic planner. Otherwise, based on history {HIST} and any limit violations, EVAL decides to either adjust 
weights and re-plan the trajectory or repair the trajectory locally. If EVAL decides to adjust the weights Wi, it calls 
WADJ, which uses a local rule set to decide which changes to make based on which limits were violated. These Wi+1 
are returned to TPLAN and the process iterates until a good trajectory is found and RET is called. If EVAL instead 
decides that local trajectory repair is appropriate, it calls REPAIR for this purpose. The repaired trajectory is re-
evaluated by FEXT and EVAL to ensure that the repair process did not introduce any new problems. If it did not, 
RET fires as above. If it did, EVAL uses {HIST} to recall the pre-REPAIR state of the problem and calls WADJ to 
attempt a fix instead. 
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TPLANINIT FEXT EVAL RET

WADJ

REPAIR

 

Fig. 2  Trajectory generation under ACT-R supervision. 

 
The Fig. 1 supporting functions are modular and easily altered to fit into an existing problem domain. For 

example, the optimal controller (TPLAN), which generates the optimal trajectory and the control inputs needed to 
attain it, could be replaced with one of the near-optimal controllers referenced above. The feature extraction unit 
(FEXT) operates on the returned trajectory, identifying properties that may be of concern to the ACT-R planner. 
Trajectory features include: cost, final time, fuel used, energy used, obstacle penalty incurred, minimum distance 
from each obstacle (min_sep), average minimum distance from all obstacles, total path length, maximum velocity, 
maximum speed, maximum rotational velocity, average velocity, average speed, average rotational velocity, number 
of changes in sign of velocity, number of changes in sign of rotational velocity, percent of trajectory spent in 
velocity plateaus, maximum acceleration, minimum acceleration, maximum rotational acceleration, minimum 
rotational acceleration, average acceleration, average rotational acceleration, number of sign changes in acceleration, 
number of changes in sign of rotational acceleration, and percent of trajectory spent in acceleration plateaus. 
 The weight adjustment module (WADJ) contains rules for changing the scalable parameters (e.g., weights and 
constants embedded in obstacle penalty functions) if the ACT-R planner determines that the returned trajectory does 
not meet limits L0 and needs to be recomputed with new parameters. Finally, the trajectory repair unit (REPAIR) 
may be called to make small alterations to trajectories when L0 is nearly satisfied and a total recomputation of the 
trajectory is deemed too time-consuming.  

Theoretically, some of the trajectory constraints or limits L0 could be encoded in the cost functional or 
incorporated as direct constraints for the optimal controller. In particular, there are techniques for representing limits 
on the state variables, so “no-go” zones could be defined for both position and velocity. Unfortunately, in practice, 
this creates singularities that violate the assumptions underlying the numeric algorithms used to solve the dual-
boundary value problem. The common solution is to use techniques like potential fields that approximate a step 
function, but are smooth to the second derivative. That, of course, introduces the possibility that, given sufficient 
motivation by other weighting factors, the trajectory can be driven through the potential field. So the process 
requires some oversight to ensure that this does not happen, which the ACT-R planner provides. 

Other limits are not easily encoded in a cost functional. For example, in these problems the final time can be left 
free (a variable to be solved for) or fixed (specified by the user). The free end time case can have penalties to drive 
the final end time towards the neighborhood of a certain known time, if desired. But there is not an obvious way to 
specify, for instance, “As quickly as possible, but no more than three hours.” It is, however, very simple to check the 
final time of a computed trajectory using FEXT. If L0 contains a value for tf, ACT-R will decide to either call on 
WADJ to adjust other scalable parameters to induce a shorter, faster trajectory or it will simply fix the end time at 
the specified maximum. 

A primary theme of this work is to bring together representations and algorithms from AI and control 
communities to autonomously solve the larger problem of unsupervised trajectory generation for complex dynamic 
systems. The use of MATLAB and Lisp was not accidental: it facilitates transition to new domains as well as initial 
implementation. Extensive MATLAB “toolboxes” have been developed and are widely used by researchers and 
practitioners in academia and industry. The symbolic data management inherent in Lisp facilitates supervision of the 
trajectory generation process, and the use of ACT-R, a symbolic planning system, enables modeling of the 
knowledge used to make the strategic decisions that actually pose each planning problem p0. Certainly, if this work 
leads to a widely-used system, the issue of language should be revisited since the tradeoff will then favor speed of 
execution over ease of code generation.  

A. ACT-R Model  
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An ACT-R model consists primarily of “chunks” of data in a knowledge base, a series of production rules, PT, 
and a set of buffers (e.g., goal, retrieval, vision) where chunks can be “remembered” and both trigger and be altered 
by PT. The PT firings are serial, and only one chunk may be stored in a buffer at a time. Productions can be used to 
create new knowledge chunks, such as the history {HIST} described above. Further “subsymbolic” processes are 
controlled via set parameters. These can control the probability with which a particular chunk is recalled, or which 
production will fire (if several are appropriate). All this together is a powerful tool that can recall what has been 
done and can choose, potentially from several options, what should be done in the present and the future. 

In our architecture, INIT takes high-level goals and encodes them into chunks useable by the EVAL module. 
Although these goals can come from any appropriate strategic planner, in our present implementation, the goals 
come directly from the human user and the initial weight set W0 and constraint set L0 are standardized constant 
vectors.  Although beyond the scope of this work, INIT should ideally be capable of interpreting and assigning W0 
values based on p0. With sufficient domain knowledge, INIT could even be made to transform strategic goals such as 
“keeping under cover” into new terms for the cost functional. 

EVAL is very much the center of the ACT-R procedure. This core process begins simply, by comparing the 
features Fi returned by FEXT to the L0 generated by INIT. When all Fi are within the bounds set by L0, nothing more 
needs to be done except to return the trajectory via RET. When some L0 are violated, EVAL has choices to make. It 
must be aware of what it has tried before so that fruitless iterations are avoided. It must decide if the current 
trajectory is a candidate for REPAIR, or if WADJ is a more appropriate approach. Trajectories are candidates for 
REPAIR only if certain restrictions are met: that the violation is of a constraint that can be fixed by REPAIR, that the 
violation is not too large, that there are not too many such violations. Otherwise, WADJ is to be done, and EVAL 
needs to prepare input for that routine. Which L0 were violated and by how much? More importantly, are there 
conflicting L0 demands? The strategic planner may unintentionally request competing limits that cannot be mutually 
satisfied. EVAL must recognize these situations and deal with them. If the strategic planner (human or otherwise) has 
requested a low level of autonomy, EVAL should inform the planner that L0 cannot be met. If a higher degree of 
autonomy has been requested, EVAL needs to be able to intelligently decide which L0 can be relaxed and by how 
much to get a solution that is as close to the planner’s request as possible. Once EVAL finds that an identified 
optimal trajectory meets all constraints, RET returns the trajectory and control input schedule to the strategic 
planner. If EVAL made changes to L0, these are reported as well.  

B. Feature Extraction (FEXT)  
The goal of the FEXT module is to extract numerical attributes from the continuous trajectory that, in some 

fashion, quantify overall features of that trajectory. The current list of features can be found in Table 1. Some are 
maximum or minimum values which are straightforward to express in L0; others are averages or percentile values 
that give an overall impression of the trajectory. The “percent plateau” values, for example, are the output of a 
routine which checks the velocity and acceleration profiles for significant periods of time (at least 10% of the total 
duration) during which the relevant value fluctuates no more than 1% of its total range. This was intended to give a 
numerical approximation to the human technique of looking at a trajectory profile and estimating how “flat” it is.  

C. Weight Adjustment and Trajectory Repair (WADJ and REPAIR)  
WADJ and REPAIR are both typically highly dependent on domain-specific knowledge. Their overall purpose 

was discussed above; their specific implementation for different cases will be discussed with those results, below. 

D. Optimal Control (TPLAN) 
The TPLAN module generates the trajectory and control input schedule via the use of optimal control theory. It 

contains both the dynamics for the robotic system and the cost functional being optimized. In this research, we 
consider a cost functional with three terms: control effort (energy and/or fuel use), time, and clearance from 
obstacles. Other terms, based on domain and goals, are certainly possible, but we have captured the standard terms 
in our existing cost functional. 

Generally, a cost functional is of the form: 

 

! 

J = g(x(t), x' (t), t)dt
t0

t f
"  (1) 
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where x(t) is the state vector and x′(t)is its derivative. A variation in the functional, δJ, can be defined for small 
changes of g(x(t),x′(t),t). If a relative minimum for J exists, it is necessary that δJ be zero at that point. Applying the 
definition of δJ to Eq. (1) yields the Euler Equation: 

 

! 

"g

dx
x * (t),x'*(t), t( ) #

d

dt

"g

dx'
x * (t),x'*(t), t( )

$ 

% & 
' 

( ) 
= 0   (2) 

where x*(t) is an extremal state vector and x′*(t) its derivative. 
 The problem is to find an admissible input (or control) vector u*(t) that causes a system described by the 
differential equations in Eq. (3) to follow an admissible trajectory x*(t) that minimizes the cost functional Eq. (4). 

 

! 

x' (t) = a(x(t),u(t), t)   (3) 

 

! 

J u( ) = g(x(t),u(t), t)dt
t0

t f
"   (4) 

 At all points along an admissible trajectory, Eq. (3) holds and can be rewritten:  

 0)()),(),(( =! tttta x'ux   (5) 

and added to g(x(t),u(t),t) with Lagrange multipliers λ to form an augmented cost functional: 

 

! 

Ja (u) = ga (x(t),x' (t),u(t)," (t), t)dt
t0

t f
#   

or, rewriting, 

 

! 

Ja (u) = g(x(t),u(t), t)
t0

t f
"

+#T a(x(t),u(t), t) $ x' (t)[ ]dt

   (6) 

 The extremals of the functional are where δJa is zero. Finding δJa and setting it to zero results in three necessary 
equations. They are most commonly expressed in terms of the Hamiltonian, which is defined as: 

 

! 

H (x(t),u(t)," (t), t)

= g(x(t),u(t), t) + "
T
[a(x(t),u(t), t)]

   (7) 

The necessary conditions are then: 

 

! 

x'*(t) =
"H

"#
(x * (t),u * (t),# * (t), t)  (8a) 

 

! 

"'*(t) = #
$H

$x
(x * (t),u * (t)," * (t), t)  (8b) 

 

! 

0 =
"H

"u
(x * (t),u * (t),# * (t), t)   (8c) 

for all ],[ 0 fttt! . For a fixed final time and a fixed final state, we have boundary conditions  

 x(t0) = x0  (9a) 



LENNON AND ATKINS 

 12 

 x(tf) = xf  (9b) 

which gives the equations needed to determine the constants of integration. Optimization over final time is enabled 
by identifying the time at which the returned solution has minimum-cost. The split boundary value problem is not in 
general solvable in closed-form, so numeric methods were employed in this work.  We use the MATLAB routine 
bvp4c as our numeric solver. This routine uses the collocation method to optimize the trajectory and is fully 
described elsewhere.13 It is a somewhat slow offline planner, suited for planning trajectories through well-
characterized and predictable environments (such as space). Unpredictable environments require a more reactive 
approach that could be used as TPLAN so long as a full-state trajectory is returned.  

III. � Point Mass Planar Robot 
A simplified 2-D domain model was developed as an intuitive baseline case for our architecture and as a method 

of developing initial modules to populate the Fig. 1 architecture. The basic ACT-R “supervisor” model PT, largely 
domain-independent, was applied to this problem. The optimal controls model, on the other hand, is somewhat 
unique to each dynamic system, and is described below for the 2-D planar robot. Weight Wi adjustment criteria are 
then derived from a study of trajectory features Fi as a function of relative weight values in Wi, and an example is 
presented that illustrates complete operation from problem p0 initialization (INIT) to return (RET) of dynamically-
feasible solution X that meets feature limits Li, maintained as constant set L0 in the current implementation. 

A. Optimal Control Model (TPLAN) 
We began our investigations with a 2-DOF point-robot model, imagining a rover-like robot traveling in a plane, 

using electric motors for propulsion. We used this highly simplified domain to gain an intuition into the process of 
adjusting the cost functional weights and computing, then evaluating, the resulting trajectories. The model has 
simple linear dynamics: 
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where m is object mass and cs is the coefficient of sliding friction. We assume an idealized system without motor 
saturation and perfect trajectory tracking.  

B. Terms of the Cost Functional 
In robotic applications, two concerns are usually paramount: conserving fuel or battery power and not running 

into obstacles. Additionally, there may be time constraints on a mission. Equation (11) gives the cost functional J 
and weight set <W1, W2, W3, LIM>. Each term is described more fully below. 
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 Energy Use 
Since we are considering a hypothetically battery-powered vehicle, we followed Kirk2 in adding a minimum-

energy term. We have simplified his representation somewhat; he includes a potentially different weight for each 
uj

2(t) in the control vector. We do, however, account for varying individual control vector elements in the 6-DOF 
example shown below, where translational actuators require fuel and rotational actuators require electrical power.  
Time 

Since J is an integral, the cost functional only needs a constant term, W2, to minimize time.  Over the integral, 
the resulting W2*tf will be minimized. 
Clearance to Obstacles 

To keep the vehicle away from obstacles, we add the term 

! 

W3 * max
i"{O}

oi (ri )( ) , presuming simple circular 

obstacle geometries. We assume that our agent has an a priori map of the region it will traverse, possibly obtained 
from an orbiter or fly-over. oi(ri) is a function which increasingly penalizes the agent as it approaches obstacle i. W3 
is the relative weight in overall cost from Eq. (11), and ri is the distance from the vehicle to obstacle i’s center. oi(ri) 
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is maximum over the center of the obstacle, attains fixed value K at the obstacle boundary a distance Ri from the 
obstacle center, and decreases to zero at a distance LIM away from the obstacle's edge (Fig. 3). These constraints are 
described by Eq. (11) and also include a smoothness condition o′(LIM). A third-order polynomial solution [Eq. 
(12)]that meets these constraints was selected as oi(ri). This solution is positive within the region of influence (ri 
<LIM) and effectively repels the path given sufficient K, LIM values.  
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In our analysis of the effects of changing the parameters on the trajectory, we included changes not only in W3 
but also in LIM. They had distinctly different effects, as discussed below. 

In addition to these terms, the system dynamic equations are adjoined to J as discussed above. This ensures that 
only dynamically feasible trajectories will be considered. 

 

 
Fig. 3  Piecewise cubic potential field used as a penalty function for clearance from obstacles. 

C. Weight Adjustment (WADJ) 
To acquire and encode expert-level knowledge on trajectory adjustment, we constructed a series of experiments. 

We identified a series of “trajectory features” – gestalt qualities such as total path length, maximum acceleration, the 
amount of time spent in velocity or acceleration “plateaus,” the number of changes of sign in the acceleration, and so 
on. (See Table 1 for complete list). Not every quality will be relevant to every goal trajectory, of course; ride quality 
measures like changes in acceleration won’t matter if the vehicle is structurally strong and no passengers are 
onboard. We then generated sample trajectories for various combinations of the weights Wi for some different 
obstacle fields. Of note is that, while the absolute magnitude of LIM is of importance, the absolute magnitudes of the 
other weights are not. Their effects are a function of their relative values. The weight set <2, 1, 1,*> gives the same 
trajectory as <100, 50, 50,*>, for example. Therefore, we found it most useful to analyze the Wi in ratios. We looked 
for relationships between trajectory features and the ratios W1/W2 and W3/W2. The choice of W2 as the normalizing 
factor was arbitrary. 
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Fig. 4 Power rules for selected trajectory features (a) final time (b) energy (c) maximum speed and (d) 
maximum acceleration, in a field with no obstacles. 
 

Results are encouraging. A baseline zero-obstacle case yields power rules relating many of the energy and fuel-
related features to the ratio W1/W2 (Fig. 4). Figure 4a shows the optimal time as a function of W1/W2. When the ratio 
is very small – that is, W1 (the weight on energy) is small compared to W2 (the time weight), the optimal solution has 
a very short final time. This is the same as saying that when time is prized more highly than energy, trajectories 
should take less time to complete. As the W1/W2 ratio grows, W1 equals then exceeds W2 and now energy is more 
important than time. We see a corresponding increase in the final time of the optimal trajectory. Figure 4b shows the 
relationship between the energy used and the W1/W2 ratio. Again, when W1/W2 is small, W1 (energy) is less 
important than W2 (time). So these optima have very high energy uses. As W1 increases with respect to W2 and their 
ratio increases, conserving fuel becomes a priority. The optimal solutions become those that use smaller amounts of 
energy. Figures 4c and 4d show relationships between the maximum velocity and acceleration that occur during the 
trajectory versus W1/W2. Attaining high velocities and accelerations takes a larger amount of energy than attaining 
lower ones. Also, it seems likely that faster trajectories (with lower final times) are more likely to have high 
maximum velocities and accelerations. So we see again that when W1/W2 is small and energy is “unimportant” 
compared to time, the maximum velocities and acceleration are much higher than for larger W1/W2 ratios where 
conserving energy takes precedence. 

These rules are somewhat less robust when one and then three obstacles were added to the field (Figs. 5 and 6). 
With these environment changes, the value of equation constants varied and the correlation coefficient that indicates 
quality of the data fit was reduced. This is hardly unexpected. The presence of one or more obstacles will of course 
result in different data compared to a traverse of a clean, straight-line path from target to goal. But results from the 
obstacle cases are sufficiently similar to the zero-obstacle case to justify using the zero-obstacle results as a 
framework or heuristic for adjusting W1 and W2. These rules are not absolutely predictive; they are guidelines that, 
depending on the number and location of obstacles in the environment, may be more or less accurate. This is why 
we need the intelligent oversight of the EVAL module. When the WADJ rules are less than perfectly predictive, the 
intelligent oversight guides future iterations in the direction of an acceptable trajectory, if one exists.  
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Fig. 5  Power rules for selected trajectory features (a) final time (b) energy (c) maximum speed and (d) 
maximum acceleration, in a field with one obstacle. 
 

 
Fig. 6 Power rules for selected trajectory features (a) final time (b) energy (c) maximum speed and (d) 
maximum acceleration, in a field with three obstacles. 
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 Path-related features, such as minimum separation from obstacles, did not vary with the W1/W2 ratio (Fig. 7a). 
There was a weak relationship with W3 (Fig. 7b), but LIM actually had the most impact (Fig. 7c). This is graphically 
illustrated in Fig. 8. For all of the blue paths, LIM=3, W1/W2 = 1 and W3 varies from 1 to 5. For the green paths, 
W1=W2=W3 and LIM is varied from 1 to 7. Clearly, changing LIM is the way to effect major changes in path 
qualities for this simple planar robot. 

The resulting WADJ rules are listed in Table 1. More rules could be written – one or more for each trajectory 
feature in Fi – but these rules capture the salient features we felt were most important for planar robot and spacecraft 
domains. When the trajectory features found using FEXT do not meet limits L0, WADJ rules are used to determine 
how to change the weights Wi to bring the trajectory features into compliance with the limits. 

 

 
 

Fig. 7  Minimum separation from a single obstacle along a path as a function of (a) W1/W2 (b) W3 (c) LIM. 
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Fig. 8  Effects on path of changing W3 (solid blue lines) and LIM (dashed black lines). 
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D. Trajectory Repair (REPAIR) 
The trajectory repair module, REPAIR, is included to deal with a small set of special conditions. It may be that 

the trajectory returned meets almost all constraints in L0, but still fails one or two limits by a small amount. One 
common example is a path that passes just barely inside an obstacle. With our current, computationally expensive 
version of TPLAN, it is undesirable to recompute the entire trajectory to repair one or two small errors. It is 
worthwhile, at least, to determine if a small, smooth adjustment of the trajectory to within the set limits is feasible. 
REPAIR makes the adjustment; the result is passed back to FEXT to determine if the changes were good or if they 
only introduced more errors. 

 

Table 1  Weight Adjustment Rules for the Planar Robot 

IF THEN 

  Use power rule u2 = c1(W1/W2)-0.5 

u2 not met Compute c1 from current W1, W2 and u2 values 

  Use desired u2 and c1 to compute new W1/W2 

  Use power rule tf = c2(W1/W2)0.4 

new W1/W2 computed Compute c2 from current tf and old W1/W2 

  Use c2 and new W1/W2 to compute new expected tf 

  Test trajectories in range +/- 10% of new tf value 

  Use power rule tf = c2(W1/W2)0.4 

tf not met Compute c2 from current tf and W1/W2 

  Use desired tf and c2 to compute new W1/W2 

  Test trajectories in range +/- 10% of new tf value 

Min separation from Use linear rule min_sep = c3 LIM 

obstacle not met Compute c3 from least of all current min_sep values and current LIM 

  Use desired min_sep and c3 to compute new LIM 
 
We currently are only investigating addressing one trajectory problem, the obstacle minimum separation 

constraint discussed above. REPAIR uses a cubic spline to match positions and velocities at two “good” trajectory 
points on either side of the region in violation, and then to interpolate smooth position and velocity curves between 
them (for all DOF) that circumvents the obstacle at or above the required minimum separation distance. Although 
REPAIR was motivated by preliminary examples where obstacle boundaries were in fact penetrated, in the case 
study presented below, we did not encounter paths that passed through the obstacles, so REPAIR was not called. 

E. Planar Robot Case Study 
We used a 10 x 10 field with two obstacles for this example. Since this is a simplified example, there are no 

particular units; distance is measured in “distance units,” time in “time units” and so on. We imposed the following 
L0 on the trajectory: 
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where u2
tot is the total energy used, {O} are the obstacles and (ri – Ri) is the distance of the point robot from the edge 

of each. As a starting guess, we took W1=W2=W3 and LIM=3. The resulting trajectory (Fig. 9) used 25.83 energy 
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units, violating L0,1. WADJ used this feature value, F1,1, and the W1/W2 ratio was used to compute the coefficient for 
the power rule governing energy use. Using a desired F1,1 of 20, a new W1/W2 value was computed. This value, 
together with a coefficient derived from the time power rule, was then used to estimate the new optimal time. This is 
an artifact of our particular instantiation of TPLAN, which converges much more quickly when a good guess for the 
general neighborhood of the true optimal time is supplied. The new Wi were passed to TPLAN and the process 
iterated. The results are shown as the first two iterations in Table 2, after which an acceptable trajectory was found 
(Fig. 10). 

 
 

Fig. 9  Initial (a) path and (b) velocity, acceleration and energy use for two obstacle example. 
 

 
        (a)                   (b) 
        
Fig. 10  (a) Path and (b) velocity, acceleration and energy use for two obstacle example with weight set <1.708, 
1, 1, 3>. 
         
 
 To extend the example, we added a third component to L0 at this point acting as “maximum separation” (e.g., 
appropriate should the vehicle wish to survey each obstacle it passes):  
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Note that an unobstructed path will not be diverted to survey obstacles without an additional cost function term that 
attracts the path toward survey sites. Using the linear relationship between LIM and the minimum separation, WADJ 
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calculated the coefficient based on current data and evaluated the LIM needed for a minimum separation distance of 
2.0 distance units. This came out to 2.33. Sending the results back to TPLAN (with the same time schedule as 
Iteration 2, since the final time does not depend strongly on LIM) returned the results on the last line of Table 2. As 
an added and expected bonus, there is a fuel savings as well when the vehicle can more closely approach obstacles. 
Since L0,1 does not require that the energy be near 20 units, only less than 20 units, there is no reason to recompute 
the trajectory. Figure 11 shows the resulting path and trajectory information. 
 

Table 2  Planar Robot Case Study Results 

Iteration # Wi Energy Min separation 
from Obstacle 1 

Min separation 
from Obstacle 2 

Wi+1 

0 <1, 1, 1, 3> 25.83 2.00 1.94 <1.668, 
1, 1, 3> 

1 <1.668, 1, 1, 3> 20.24 2.00 1.94 <1.708, 
1, 1, 3> 

2 <1.708, 1, 1, 3> 18.82 2.57 2.73 <1.708, 
1, 1, 

2.33> 
3 <1.708, 1, 1, 

2.33> 
16.72 1.94 1.90  

 

 
Fig. 11  (a) Path and (b) velocity, acceleration and energy use for two obstacle example with weight set <1.708, 
1, 1, 2.33>. 

IV. � Spacecraft Trajectory Optimization 
A spacecraft flying through an obstacle field was modeled with dynamic model and optimal controls (TPLAN) 

procedure adopted from previous work by Henshaw and Sanner.3 No external gravity fields are present; it is a “flat 
space” problem. The original algorithm was applicable to cases with no obstacles, with stationary obstacles, and 
with moving obstacles. Here, we show examples of the same stationary obstacle set solved for a range of weights.  

A. Optimal Control Model 
The spacecraft modeled has three fuel-powered saturating thrusters for translation (inputs fi) and three pairs of 

electrical rotation actuators with saturation (inputs τi) for rotation. Its 6-DOF dynamic equations are: 
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where σ is a modified Rodrigues vector14 (a representation of angular position, chosen instead of the quaternion for 
computational reasons) and ω is the rotational rate vector expressed in the body frame. Since ui, composed of fi and 
τi, is limited, control switching curves were computed using Pontryagin’s Minimum Principle. These discontinuous 
curves were then approximated with continuous versions for computational reasons. 

B. Terms of the Cost Functional 
The cost functional for the 6-DOF example shares some terms with the simple 2-DOF case, but has a few 

additional terms due to the increased complexity of the model. The cost functional is given in Eq. (15) and the 
individual terms explained below. 
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Fuel Use  
For mass ejection thrusters, the form of the cost functional term is typically taken as W1*||f(t)||1.  

Energy Use 
The electrical rotation actuators use the same minimum-energy term as the point-robot model, above. In this 

example, the energy weight W2 can be set separately from the fuel weight. 
Time 
 The same constant weight, W3, penalizes time here as in the point-robot model. 
Clearance to Obstacles 

In this example, perfect tracking of the trajectory is not assumed. Therefore, it is not only prudent to penalize 
nearness to obstacles, but also high velocities near obstacles. Otherwise, since the cost functional is optimized over a 
time integral, not a path integral, the planner can avoid high obstacle penalties by getting very close to obstacles, but 
passing them very quickly. This is not desirable behavior. So, in addition to penalizing nearness with oi(ri), we add a 
penalty term vi(r′i) which is based on the velocity of the spacecraft when it is within a certain distance of the 
obstacle. The total penalty is then the product of these two components, weighted by W4. There is also an obstacle 
“influence” parameter which serves the same function as LIM in the 2-DOF case. Our weight set Wi for this example 
is then <W1, W2, W3, W4, LIM>.  As in the 2-DOF case, the system dynamical equations are adjoined to Eq. (15) 
before the cost functional is minimized. This ensures that all the considered trajectories are dynamically feasible. 

C. Sample Spacecraft Trajectories 
As an illustration of the effects of adjustable weights on the resulting trajectory, we provide figures for three 

different cases. Each of these was computed for a fixed end time of 20 time units, so changes to the time weight W3 
had no effect. This allows us to compare just the tradeoffs between fuel and safety (obstacle avoidance), which are 
more critical than maneuver time in many spacecraft operations.  

Figure 12 shows a baseline case for weight set <1, 1, 1, 1, 1>. Changing LIM from 1 to 2 results in the path 
shown in Fig. 13. The pronounced corners appear to be an artifact of the shape of the potential field around the 
rectangular obstacle. Weight set <2, 2, 1, 1, 1>, giving a fuel and energy efficient path, is shown in Fig. 14. The 
potential to elicit different trajectory characteristics in this domain, as was done for the simple 2-DOF example, is 
apparent. We expect to find both power and linear weight adjustment rules in the 6-DOF domain as we did for the 
completed 2-DOF domain based on these similarities. The WADJ module for the spacecraft case is under 
construction and includes data from simulations with free end times.   
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Fig. 12  (a) Path  through space and (b) trajectory information for weight set <1, 1, 1, 1, 1>.  

 

 
 

Fig. 13  (a) Path  through space and (b) trajectory information for weight set <1, 1, 1, 1, 2>. 
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Fig. 14.  (a) Path  through space and (b) trajectory information for weight set <2, 2, 1, 1, 1>. 

 

D. Architecture Scalability 
The 2-DOF point robot model had a state vector with eight entries (x1 and x2, derivatives for both, plus four 

corresponding Lagrange multipliers). The rigid-body 6-DOF spacecraft model – a realistic and complex system 
model that accurately portrays flat space dynamics and thruster limitations – had a state vector with 24 entries. This 
increase in complexity was apparent at runtime. Ongoing data collection to develop WADJ rules has runtimes of 
about thirty minutes for most of the zero-obstacle cases, and runtimes of up to eight hours for the single-obstacle 
case. In contrast, the 2-DOF zero-obstacle runs converged in seconds, and the single-obstacle cases typically 
finished within 15-30 minutes. 

This performance is acceptable only when extremely long planning cycles are possible, as is typical for 
spacecraft mission design and even detailed trajectory planning after launch given the significant drift time between 
maneuvers. Multi-hour performance per iteration is, however, not acceptable for online (real-time) execution in 
other air or ground/space robotic domains, given that one frequently needs to replan in the field because of some 
unexpected contingency. Vehicles like aircraft may not have a static “safe mode” they can return to even for a full 
minute, let alone a full hour, while the system replans the trajectory.   

In our architecture, the vast majority of the computation time is taken up by the TPLAN module. Our current 
TPLAN is the MATLAB bvp4c algorithm, which is in no way intended to be a real-time computational tool. 
Although less commonly used, we have identified two near-optimal trajectory planners (Ref. 5 and an unpublished 
method under development at the Naval Research Laboratory) as possible alternatives to the current TPLAN. These 
offer trajectory costs that approach the optimal with runtimes that approach that of a reactive planner. The 
adaptation of one of these algorithms, or another similar one, and a comparison of the results to those obtained with 
our current TPLAN is a definite future goal. 

V. Conclusions and Future Work 
An architecture has been presented that integrates a symbolic planner with an optimal controls trajectory planner 

to automatically construct trajectories without the manual oversight traditionally required. Weight sets are selected 
based on mission constraints, and trajectories are validated against this constraint set since the mathematical 
optimization process is performed over a single total cost value rather than individual constraints such as those listed 
in Table 1. Unacceptable trajectories are repaired locally or re-optimized over different weight sets expected to 
better meet violated constraints. Specific implementations for a 2-D planar robot and 6-DOF spacecraft are 
presented along with results illustrating the significant effects of altering weights.  

Identification of a universal set of rules for weight adjustment over all problem instances and all domains has 
proved to be a difficult task, leading us to conclude that the best ACT-R (or a human agent) can expect is to base 
initial weight sets on historical trends that work in most but not all cases. The use of an AI planner as the oversight 
agent is, in fact, strongly motivated by this challenge, since planners are specifically designed to search through the 
host of alternatives whenever its default rules (or heuristics) do not initially produce an acceptable solution. Because 
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ACT-R maintains a history of trajectory optimization attempts, it will try weight combinations until it exhausts the 
set of appreciably-different weight sets that might meet the constraints. However, in some cases, ACT-R may not be 
able to identify a weight set that produces a valid trajectory, either because no such trajectory exists or because the 
combination of (TPLAN, EVAL, WADJ) algorithms cannot generate such a solution. We have seen no such case in 
our limited set of examples, but such problems do, in fact, exist, and human users are often faced with the same 
issues. With a fully-autonomous system, a failure status would be returned to the meta-level rule set that posed 
planning problem p0 in the first place, at which time either constraint set Li would be relaxed or else a different plan 
that didn’t require the solution for p0 would be identified. This framework is a new method by which the trajectory 
generation and optimization process can be addressed in an autonomous system, and in such a way that it supports 
the higher-level goals of the system. 

Work is in progress to extend the rule sets and the spacecraft implementation to better adjust weights and to 
function in the presence of central gravity fields. Although this paper enables comparison between a “baseline” (e.g., 
Wi = <1, 1, 1, 1>) trajectory versus refined solutions that better meet constraints, we also plan to explore the tradeoff 
between optimized trajectories that are slow to compute (minutes or even hours for a single TPLAN execution) with 
suboptimal but real-time reactive trajectories resulting from a more traditional path planning approach. The 
challenge with this comparison will be to select a “representative” path planner generally accepted by the 
community and then to appropriately augment the result with velocities/forces required to compute cost and 
trajectory feature (Table 1) values needed for quantitative comparison of results. We also plan to study the 
performance of our ACT-R agent in comparison to expert and novice human overseers of the trajectory planning 
process, enabling a statistical performance characterization as well as potential improvement to the ACT-R rules 
based on expert strategies not yet incorporated as production rules.  

We also plan to apply this research to multi-agent trajectory planning tasks. Teams of autonomous air, space, and 
ground agents, whether docking, in formation, or cooperatively achieving overall goals, are featured in most future 
NASA and Department of Defense missions. The methods outlined above provide a way to implement navigation 
for formations or single vehicles in close proximity that is optimizable and flexible provided environmental 
characteristics are known. 

We will explore two approaches to the problem. The first is a “true optimal,” where all vehicles are included in 
one large state vector. The formation is defined by cost functional constraints penalizing deviation from certain 
relative positions. The trajectories for all formation members are then computed simultaneously, resulting in an 
overall optimized system. This is computationally extremely expensive, and inspires a second approach. Here, we 
will first have the formation leader plan its optimal trajectory. It then becomes a known moving obstacle in the next 
vehicle’s trajectory generation run. We can express as a penalty its deviation from a certain position relative to this 
“moving obstacle.” It and the first vehicle are obstacles for the third vehicle’s trajectory generation, and so on. 
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